Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia.
نویسندگان
چکیده
BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose-response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiologic changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330 to 50 s. The median difference in time to emergence between the saline control group (n = 6) and the chloro-APB group (n = 6) was 222 s (95% CI: 77-534 s, Mann-Whitney test). This difference was statistically significant (P = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram δ power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia and produces behavioral and neurophysiologic evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general anesthesia.
منابع مشابه
Dopaminergic D1 receptors in nucleus basalis modulate recovery from propofol anesthesia in rats
Objective(s): Melatonin, an important hormone secreted by the epiphysis, is a powerful anti-oxidant with a high potential to neutralize medical toxins. The goal of this study was to demonstrate the beneficial effect of melatonin on epididymal sperm and reproductive parameters in mice treated with acetylsalicylic acid (ASA).Materials and Methods:</stro...
متن کاملMethylphenidate actively induces emergence from general anesthesia.
BACKGROUND Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study, the authors tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from isoflurane general anesthesia. METHODS Us...
متن کاملElectrical stimulation of the ventral tegmental area induces reanimation from general anesthesia.
BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induces reanimation (active emergence) from general anesthesia. The authors tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (n =...
متن کاملBasal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia.
BACKGROUND The tuberomammillary histaminergic neurons are involved in the sedative component of anesthetic action. The nucleus basalis magnocellularis (NBM) in the basal forebrain receives dense excitatory innervation from the tuberomammillary nucleus and is recognized as an important site of sleep-wake regulation. This study investigated whether NBM administration of histaminergic drugs may mo...
متن کاملDopamine-enhancing medications to accelerate emergence from general anesthesia.
5 January 2013 D OPAMINERGIC neurotransmission is prominently implicated in emergence from the minimal conscious state,1,2 general anesthesia,3 and in sleep–wake regulation.4 The molecular mechanisms for these effects are still incompletely understood. The anatomical and neurochemical signatures of the dopamine (DA) system for arousal under conditions of general anesthesia are clinically import...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 118 1 شماره
صفحات -
تاریخ انتشار 2013